verted negative peaks. The region $4-7 \mathrm{ppm}$ was still too congested and hence $50 \% \mathrm{C}_{6} \mathrm{D}_{6}$ was added to spread out the spectrum (Figure 1, bottom run). For further improvement, the 4.75 ppm HDO peak was moved upfield out of the range of overlap by warming the sample to $55^{\circ} \mathrm{C}$. As shown in Figure 1 (top run), the resulting spectrum was a dramatic improvement over the original (inset), and revealed almost all chemical shifts and coupling constants. This assignment is consistent with that of the trans opening of isomer I by guanine when compared with the cis and trans hydration products from isomer I^{5} and was confirmed by showing that the $7-\mathrm{H}$ doublet at 5.23 ppm (see insert, Figure 1) moves downfield to 6.60 ppm $J_{7.8}=9 \mathrm{~Hz}$ in the per- O-acetate derivative (acetic anhy-dride-pyridine, room temperature 12 h).

The point of attachment of the guanosine moiety was proved as follows. When measured in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ the ${ }^{1} \mathrm{H}$ NMR spectrum of 1 showed a conspicuous doublet at $6.92 \mathrm{ppm}(J=8 \mathrm{~Hz}$, $\mathrm{N}^{2}-\mathrm{H}$ of guanine), which collapsed to a singlet upon irradiation of the 10 -proton at 5.93 ppm (overlapping with the $1^{\prime}-\mathrm{H}$) and disappeared upon addition of $\mathrm{D}_{2} \mathrm{O}$. Such observations are only consistent with substitution of the N^{2} of guanine at the $10-$ position of isomer I. The high resolution mass spectrum of the $5^{\prime}, 7$-diacetate $2^{\prime}, 3^{\prime}, 8,9$-diacetonide of $3^{6,7}$ also indicated that substitution had occurred through the N^{2} of guanine. An ion at $m / e 342.1152\left(1.9 \%, \mathrm{C}_{22} \mathrm{H}_{16} \mathrm{NO}_{3}=342.1129\right)$ corresponds to cleavage between the $\mathrm{C}-2$ and N^{2} positions of guanine and loss of acetone from the BP moiety. An additional loss of acetic acid from this ion was also observed: $m / e 282.0930$ (4.5\% $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{NO}=282.0919$).

Current investigations are directed towards the absolute configurations of $\mathbf{1}$ and $\mathbf{3}$ and other derivatives formed with RNA and DNA during metabolism of BP. ${ }^{8}$

References and Notes

(1) A. Borgen, H. Darvey, N. Castagnoli, T. T. Crocker, R. E. Rasmussen, and I. Y. Wang, J. Med. Chem., 16, 502 (1973); P. Sims, P. L. Grover, A. Swaisland, K. Pal, and A. Hewer, Nature (London), 252, 326 (1974); P. Daudel, M. Duquesne, P. Vigny, P. L. Grover, and P. Sims, FEBS Lett., 57, 250 (1975).
(2) I. B. Weinstein, A. M. Jeffrey, K. W. Jennette, S. H. Blobstein, R. G. Harvey, H. Kasai, and K. Nakanishi, Science. 193, 592 (1976).
(3) The adducts were prepared by reacting isomer (\pm)-I with poly(G) (both at $1 \mathrm{mg} / \mathrm{ml}$) in 2:1 acetone-water for 24 h at $37^{\circ} \mathrm{C}$. The unbound derivatives were removed by extraction with ethyl acetate and 1-butanol followed by precipitation of the poly (G) with ethanol. The modified polymer was hydrolyzed for 18 h at $37^{\circ} \mathrm{C}$ with 0.3 N NaOH . The nucleotides were applied to a LH-20 Sephadex column ($1.8 \times 66 \mathrm{~cm}$), eluting first with $20 \mathrm{mM} \mathrm{NH}_{4} \mathrm{HCO}_{3}$, pH 8.5 , to remove GMP and then a gradient of $20-80 \%$ methanol which separated guanosine derivatives 1 and 3 as their monophosphates. The latter were treated with alkaline phosphatase and the nucleosides (1 and 3) repurified by LH-20 Sephadex chromatography. Analysis of these derivatives by HPLC (Dupont Zorbax ODS column, $0.25 \mathrm{~m} \times 6.4 \mathrm{~mm} ; 2500 \mathrm{psi} ; 50^{\circ} \mathrm{C}$; 40% methanol in water) showed $1(21 \mathrm{~min})$ to be essentially pure and 3 (34 min) to be contaminated by about 10% with a third component $2(25 \mathrm{~min})$ (structure unknown). For detailed methods see S. H. Blobstein, I. B. Weinstein, D. Grunberger, J. Weisgras, and R. G. Harvey, Blochemistry, 14, 3451 (1975). and A. M. Jeffrey, S. H. Blobstein, I. B. Weinstein, and R. G. Harvey, Anal. Biochem., 73, 378 (1976).
(4) The CD spectra of 3 and 1 (50% water/methanol, Cary 60, JASCO J- 40 instruments) showed weak extrema of same intensities but of opposite signs in the region $350-290 \mathrm{~nm}$. Only the strong Cotton effects are listed. Compound 3 had the following $\Delta \epsilon$ at the indicated wavelengths: $280 \mathrm{~nm},+31$; $275 \mathrm{~nm},-16 ; 249 \mathrm{~nm},+115$; and $240 \mathrm{~nm},-53$; Compound 1:280 nm, -34 ; $273 \mathrm{~nm},+4 ; 249 \mathrm{~nm},-56 ; 240 \mathrm{~nm},+25$. The $5^{\prime}, 7$-diacetate $-2^{\prime}, 3^{\prime}, 8,9-$ diacetonides of 3 and 1 showed the following CD spectra 3: $280 \mathrm{~nm},+37$; $275 \mathrm{~nm},-26 ; 249 \mathrm{~nm},+125 ; 236 \mathrm{~nm},-63,1: 280 \mathrm{~nm},-38 ; 275 \mathrm{~nm},+34 ;$ $249 \mathrm{~nm},-121 ; 236 \mathrm{~nm},+61$.
(5) J. Keller, PhD Dissertation, Department of Chemistry, University of Wisconsin, Madison, Wis., 1976.
(6) The mass spectrum (Jeol JMS-01SG -2, El mode, 70 eV , probe $290^{\circ} \mathrm{C}$ source $250^{\circ} \mathrm{C}$) showed ions mainly resulting from losses of acetic acid and/or acetone from the molecular ion $m / e 749.2704\left(1.1 \%, \mathrm{C}_{40} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{10}\right.$ $=749.2697) ; 384.1365\left(5.9 \%, \mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{4}=384.1362\right) ; 350.1099(4.6 \%$, $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{6}=350.1100$); $324.1158\left(16 \%, \mathrm{C}_{23} \mathrm{H}_{16} \mathrm{O}_{2}=324.1150\right.$); $284.0869\left(30 \%, \mathrm{C}_{20} \mathrm{H}_{12} \mathrm{O}_{2}=284.0837\right)$; $268.0876\left(12 \% \mathrm{C}_{20} \mathrm{H}_{12}=\right.$ 268.0888); 256.0879 ($12 \%, \mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}=256.0888$); 255.0825 (14%, $\left.\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{O}=255.0810\right) ; 239.0833\left(13 \% \mathrm{C}_{19} \mathrm{H}_{11}=239.0860\right) ; 43$ $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{O}$
(100%).
(7) The authors wish to thank Dr. P. Roller, NCI, NIH, for the thorough analysis of the high resolution mass spectrum of the diacetate, diacetonide of 3. This work was supported by NIH Grants CA-02332 and CA-11572, NCI Contracts E-72-3234 and CP-033385, and American Cancer Society Grant BC-132.
(8) Note Added in Proof: When reacted with poly(G), 7,12-dimethylbenz[a]-
anthracene-5,6-oxide has also been shown to link covalently via the 2 -amino group of guanosine: A. M. Jeffrey, S. H. Blobstein, I. B. Weinstein, F. A Beland, R. G. Harvey, H. Kasai, and K. Nakanishi, Proc. Natl. Acad. Sci., U.S.A., 73, 2311 (1976).

A. M. Jeffrey, ${ }^{*}$ K. W. Jennette S. H. Blobstein, I. B. Weinstein
Institute of Cancer Research. Columbia University New York, New York 10032

F. A. Beland, R. G. Harvey*
Ben May Laboratory for Cancer Research
University of Chicago
Chicago, Illinois 60637

H. Kasai, I. Miura, K. Nakanishi*
Department of Chemistry, Columbia University
New York, New York 10027

Received April 27, 1976

1,3-Dithietane

Sir:

Although derivatives of 1,3-dithietane (1) have been known for over 100 years, ${ }^{1}$ the parent compound has until now remained unknown. We describe herein a simple synthesis of 1 from readily available starting materials. We also report the preparation of the previously unknown S-oxides of $1,1,3$-dithietane 1 -oxide (2), 1,3-dithietane 1,1-dioxide (3), cis- and trans-1,3-dithietane 1,3-dioxide (4 and 5, respectively), and 1,3-dithietane $1,1,3$-trioxide (6), and the conversion in high yield of several of these compounds $(\mathbf{3}, \mathbf{4}, 5,6)$ to the previously described sulfene dimer, 1,3-dithietane 1,1,3,3-tetraoxide (7). ${ }^{2}$ We have initiated a detailed investigation of the reactions and structural features of these interesting heterocycles. Novel structural features of two of the above compounds are described in this communication while one aspect of the chemistry of 2, namely, its facile pyrolytic conversion into sulfine and thioformaldehyde, is reported elsewhere. ${ }^{3}$

While bis(chloromethyl) sulfide fails to give monomeric product with sodium sulfide, ${ }^{4}$ presumably due to the high reactivity of the former compound in displacement processes,

Scheme I

${ }^{a} \mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}$, DMF. ${ }^{b} \mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H}, \mathrm{CHCl}_{3}, 0^{\circ} \mathrm{C} .{ }^{c} \mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}, 0.3$ equiv of "Aliquat 336 ", $\mathrm{H}_{2} \mathrm{O}$, vigorously stirred. ${ }^{2} 2$ mol equiv of 1 M THF- $\mathrm{BH}_{3}, 24 \mathrm{~h}$ at $25^{\circ} \mathrm{C} .{ }^{e} \mathrm{PhICl}_{2}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{H}, \mathrm{O}$ (or $\mathrm{H}_{2}{ }^{18} \mathrm{O}$). $f\left(\mathrm{PhICl}_{2}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{H}_{2} \mathrm{O},-30^{\circ} \mathrm{C}\right.$ or $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}^{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$. $g 0.67 \mathrm{~mol}$ equiv of $\mathrm{KMnO}_{4}, \mathrm{MgSO}_{4}$, acetone, $-30^{\circ} \mathrm{C}$. ${ }^{\boldsymbol{n}} 30 \mathrm{~mol}$ equiv of $\mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H}, 100^{\circ} \mathrm{C}, 4 \mathrm{~h}$.
bis(chloromethyl) sulfoxide ${ }^{5}$ in the presence of the phase transfer catalyst "tricaprylylmethylammonium chloride" (General Mills "Aliquat 336°) reacts rapidly and exothermically at room temperature with aqueous sodium sulfide affording 2, mp 71-73.5 ${ }^{\circ} \mathrm{C}$, in 36% yield 6,7 (Scheme I). Reduction of 2 with excess 1 M tetrahydrofuran-borane (Aldrich) at room temperature for 1 day gives $1, \mathrm{mp} 105-106^{\circ} \mathrm{C}$, in 70% yield. ${ }^{7}$ Reoxidation of 1 with iodobenzene dichloride in acetonitrile containing $\mathrm{H}_{2}^{18} \mathrm{O}$ and triethylamine ${ }^{8}$ affords $2-{ }^{18} \mathrm{O}$ (required for microwave studies ${ }^{3}$). Treatment of 2 at $-20^{\circ} \mathrm{C}$ with $\mathrm{KMnO}_{4} / \mathrm{MgSO}_{4}$ in acetone ${ }^{9}$ yields 3 (96%), mp 141-143 ${ }^{\circ} \mathrm{C} .{ }^{7}$ Oxidation of 2 with iodobenzene dichloride in aqueous pyridine at $-30^{\circ} \mathrm{C}$ or with metachloroperbenzoic acid in methylene chloride at $0^{\circ} \mathrm{C}$ produces, respectively, a $3: 1$ or 2:3 mixture of $\mathbf{4}^{7}\left(\mathrm{mp} 260^{\circ} \mathrm{C} \mathrm{dec}\right)$ and $5^{7}\left(\mathrm{mp} 203-205^{\circ} \mathrm{C}\right.$ dec), readily separable by fractional recrystallization from dimethylformamide. ${ }^{10}$ Treatment of $\mathbf{3}$ in chloroform at $0^{\circ} \mathrm{C}$ with peracetic acid gives $6, \mathrm{mp} 231-234^{\circ} \mathrm{C}$ in 90% yield. ${ }^{7}$ Finally, exposure of 3,4,5, and 6 to excess peracetic acid at $100^{\circ} \mathrm{C}$ for several hours gives in $71-86 \%$ yield compound 7 with spectral and physical properties in complete agreement with those previously reported for the sulfene dimer. ${ }^{2}$ Compounds 1-7 are all colorless, nicely crystalline, sublimable solids.

The structure of 2 has been determined by the isotopic substitution method from its microwave spectrum and the spectra of eight isotopic modifications $\left({ }^{18} \mathrm{O},{ }^{34} \mathrm{~S}_{0},{ }^{34} \mathrm{~S},{ }^{13} \mathrm{C}\right.$, $d_{1}-\mathrm{a}, d_{1}-\mathrm{e}, d_{3}$-aae, and d_{4}). ${ }^{12}$ The ring is "puckered", the angle between the two CSC planes being $39.3(2)^{\circ}$, with the oxygen equatorial as shown in 2a. ${ }^{13}$ Other structural parameters are:

2a
$r \mathrm{~S}_{0}-\mathrm{O}=1.473$ (3) $\AA, r \mathrm{C}-\mathrm{S}_{0}=1.81$ (2) \AA, $r \mathrm{C}-\mathrm{S}=1.82$ (2) $\AA, r \mathrm{C}-\mathrm{H}_{\mathrm{a}}=1.13(4) \AA, r \mathrm{C}-\mathrm{H}_{\mathrm{e}}=1.06$ (2) $\AA, \angle \mathrm{CS}_{0} \mathrm{C}=81.7$ (8) ${ }^{\circ}, \angle \mathrm{CSC}=81.1(5)^{\circ}, \angle \mathrm{SC}_{0}=91.2(5)^{\circ}, \angle \mathrm{CS}_{0} \mathrm{O}=112.4$ $(7)^{\circ}, \angle\left(\mathrm{H}_{\mathrm{a}} \mathrm{CS}_{0}\right)-\left(\mathrm{CS}_{0} \mathrm{O}\right)=25.5(14)^{\circ}$, and $\angle\left(\mathrm{H}_{\mathrm{e}} \mathrm{CS}_{0}\right)-$ $\left(\mathrm{CS}_{0} \mathrm{O}\right)=-99.3(24)^{\circ}$. A novel feature of the structure of 2 is the short nonbonded S...S distance of 2.600 (7) \AA (the nonbonded C...C distance is 2.37 (2) \AA). Since the S-O distance in $\mathbf{2}$ is normal (the S-O distances in cis- and trans-3-p-bromophenylthietane 1 -oxide are 1.482 (13) and $1.492 \AA$, respectively ${ }^{14}$) and 7 has been found to possess an even shorter S...S distance (see below), it seems unlikely that there is any substantial bonding between the sulfurs in $2 .{ }^{15}$

If the ring of 1 were "puckered" as much as that of 2 , its dipole moment would probably be about 1 D , and this coupled with its high vapor pressure at room temperature would result in a rich microwave spectrum. The fact that no microwave absorptions are observed for 1 suggests that its ring is equilibrium planar, or very nearly so.

The structure of 7 has been determined by x-ray diffraction methods with the following crystal data: $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}, \mathrm{M}=$ 156.2; monoclinic, space group $P 2_{1} / c ; a=5.582(2), b=5.759$ (2), $c=8.965$ (4) $\AA, \beta=116.84$ (3) $)^{\circ} ; d_{\text {measd }}=2.01 \mathrm{~g} \mathrm{~cm}^{-3}$, $Z=2, d_{\text {calcd }}=2.017 \mathrm{~g} \mathrm{~cm}^{-3} ; U=257.1$ (2) \AA^{3}; one-half molecule in the asymmetric unit located about a center of symmetry; 1184 independent counter data were collected by the $\omega-2 \theta$ scan technique. The structure was determined by direct methods and refined by full-matrix least squares (C, O, S anisotropic; H isotropic) to a discrepancy factor R_{1} of 0.038 . The four atom ring of 7 is planar ${ }^{16}$ and almost square with SCS and CSC angles of $91.5(1)^{\circ}$ and $88.5(1)^{\circ}$, respectively. Particularly notable is the extremely short nonbonded S...S distance of 2.590 (1) \AA (to our knowledge, the shortest yet
reported). Other pertinent structural features of 7 include: nonbonded C...C, 2.524 (4) $\AA, \mathrm{S}-\mathrm{O} 1.433$ (2) $\AA \AA,{ }^{17} \mathrm{~S}-\mathrm{C} 1.808$ (2) $\AA^{17}, \mathrm{C}-\mathrm{H}, 0.90$ (3) $\AA \AA^{17} \angle \mathrm{OSO}, 119.2$ (1) ${ }^{\circ}, \angle \mathrm{HCH}, 115$ (3) ${ }^{\circ}, \angle \mathrm{OSC}, 111.2(1)^{\circ},,^{17}$ and $\angle \mathrm{HCS}, 112(2)^{\circ} .17,18$

We are actively investigating the chemical reactions of these intriguing lower homologues of 1,3,5-trithiane, with one objective being the synthesis of the theoretically interesting ${ }^{19}$ molecule 2,4-dithiabicyclo[1.1.0]butane.

Acknowledgment. Support for this research from the donors of the Petroleum Research Fund, administered by the American Chemical Society (E.B.), the Research Corporation (R.E.P.), the University of Missouri-St. Louis, and the National Science Foundation under its Undergraduate Research Participation program is gratefully acknowledged. E.R.C. acknowledges use of x-ray facilities at Wayne State University during sabbatical leave. We thank Professor J. Gajewski for the high resolution mass spectrometric data.

References and Notes

(1) (a) A. Behr, Chem. Ber., 5, 970 (1872) (repeated by W. Ried and H. Klug, ibid., 94, 368 (1961); (b) B. Rathke, Justus Liebigs Ann. Chem., 167, 205 (1873); (c) A. Schönberg and A. Stephenson, Chem. Ber., 66B, 567 (1933); (d) J. R. Durig and R. C. Lord, Spectrochim. Acta, 19, 769 (1963); (e) W. J. Middleton, U.S. Patent, 3136781 (1964); Chem. Abstr., 61, 5612 (1964); (f) W. J. Middleton, E. G. Howard, and W. H. Sharkey, J. Org. Chem., 30, 1375 (1965); (g) A. R. Katritzky, R. Mayer, J. Morgenstern, and M. J. Sewell, J. Chem. Soc., 5953 (1965); (h) B. Krebs and H. Beyer, Z. Anorg. Allg. Chem., 365, 199 (1969); (i) F. J. Wortmann, G. Kiel, and G. Gattow, ibid., 376, 73 (1970); (j) J. W. Greidanus, Can. J. Chem., 48, 3530 (1970); (k) P. Yates, D. R. Moore, and T. R. Lynch, Ibid., 49, 1456 (1971); (I) S. Oae, A. Nakanishi, and N. Tsujimoto, Chem. Ind. (London), 575 (1972); (m) T. Nishio, M. Yoshioka, H. Aoyama, and N. Sugiyama, Bull. Chem. Soc. Jpn., 46, 2253 (1973); (n) Y. Ueno, Y. Masuyama, and M. Okawara, Tetrahedron Lett., 2577 (1974); (0) S. K. Gupta, J. Org. Chem., 39, 1944 (1974); (p) K. Thimm and J. Voss, Tetrahedron Lett., 537 (1975).
(2) G. Opitz and H. R. Mohl, Angew. Chem., Int. Ed. Engl., 8, 73 (1969).
(3) E. Block, R. E. Penn, R. J. Olsen, and P. F. Sherwin, J. Am. Chem. Soc., 98, 1264 (1976); also see E. Block, H. Bock, S. Mohmand, P. Rosmus, and B. Solouki, Angew. Chem. Int. Ed. Engl., 15, 383 (1976).
(4) J. Lal, J. Org. Chem., 26, 971 (1961).
(5) F. G. Mann and W. J. Pope, J. Chem. Soc., 123, 1172 (1923).
(6) For example, a vigorously stirred mixture of 0.2 mol of $\left(\mathrm{ClCH}_{2}\right)_{2} \mathrm{SO}$ and an equal weight of "Aliquat 336 ' in 200 ml of water was treated all at once with 0.26 mol of $\mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}$. After 1 h , the aqueous layer was separated, saturated with salt, and extracted repeatedly with CHCl_{3}. Concentration, followed by recrystallization from CCl_{4} gave 2.
(7) 1: NMR (CDCl ${ }_{3}$) 84.05 (s); ir (KBr) 1195 (m), $880(\mathrm{~m}), 735(\mathrm{w}), 705(\mathrm{~m}), 684$ (m) cm^{-1}; uv ($\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$) $\lambda_{\max } 216$ (860), 293 (38), 311 nm (sh, 20); MS 91.9760 (calcd for $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~S}_{2} 91.9755$). 2: NMR ($\mathrm{C}_{2} \mathrm{D}_{6} \mathrm{SO}$) $\delta 4.23$ (m), ($\mathrm{C}_{6} \mathrm{D}_{6}$) $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $\delta_{\mathrm{A}} 3.37, \delta_{\mathrm{B}} 3.73$; ir (KBr) $1150,1080,1035 \mathrm{~cm}^{-1}$ (all s); $\mathrm{uv}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) \lambda_{\max } 207$ (674), 222 (578), 266 nm (101); MS 107.9708 (calcd for $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{O}$ 107.9704). 3: NMR ($\mathrm{CF}_{3} \mathrm{COOH}$ or $\mathrm{C}_{2} \mathrm{D}_{6} \mathrm{SO}$) $\delta 5.27$ (s); ir (KBr) 1315 (s), 1200 (s), 1130 (s), 1393 (m), 555 (s), $440(\mathrm{~s}) \mathrm{cm}^{-1}$; uv ($\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ $\lambda_{\text {max }} 217$ (200), 245 nm (sh, 30); MS 123.9659 (calcd for $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{O}_{2}$ 123.9653). 4: NMR ($\mathrm{CF}_{3} \mathrm{COOH}$) $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $\delta_{\mathrm{A}} 4.78, \delta_{\mathrm{B}} 5.72$; ir (KBr) $1342(\mathrm{~m}), 1130,1100,1060,995$ (all s) $\mathrm{cm}^{-1} ;$ MS 123.9662 (calcd for $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{O}_{2}$ 123.9653). 5: NMR ($\mathrm{CF}_{3} \mathrm{COOH}$) $\delta 4.97$ (s); ir (KBr) 1342 (m), 1150 (m), 1055 (s); MS 123.9662 (calcd for $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{O}_{2}$ 123.9653), 6: NMR $\left(\mathrm{CF}_{3} \mathrm{COOH}\right) \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $\delta_{\mathrm{A}} 5.47, \delta_{\mathrm{B}} 5.88,\left(\mathrm{C}_{2} \mathrm{D}_{6} \mathrm{SO}\right) \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $\delta_{\mathrm{A}} 5.17, \delta_{\mathrm{B}} 5.72$; ir $(\mathrm{KBr}) 1325,1300,1170,1085$ (all s) cm^{-1}; MS 139.9609 (calcd for $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{O}_{3} 139.9602$). For 7 we find NMR ($\left.\mathrm{C}_{2} \mathrm{D}_{6} \mathrm{SO}\right) \delta 6.40$ ($\mathrm{s} ; \mathrm{lit}{ }^{2}$ $\delta 6.42$).
(8) G. Barbieri, M. Cinquini, S. Colonna, and F. Montanari, J. Chem. Soc. C, 659 (1968).
(9) These conditions represent a modification of the useful procedure of H B. Henbest and S. A. Khan, Chem. Commun., 1036 (1968); also see S. A. Khan, J. B. Lambert, O. Hernandez, and F. A. Carey, J. Am. Chem. Soc., 97, 1468 (1975).
(10) The assignment of structure 4 to the $\mathrm{mp} 260^{\circ} \mathrm{C}$ bis-sulfoxide and structure 5 to the $\mathrm{mp} 203^{\circ} \mathrm{C}$ bis-sulfoxide follows from the NMR spectra of these isomers (the trans isomer showing a sharp singlet for the equivalent methylene protons) as well as the predominance of the $\mathrm{mp} 260^{\circ} \mathrm{C}$ isomer or the $\mathrm{mp} 203^{\circ} \mathrm{C}$ isomer under conditions involving respectively thermodynamic control $\left(\mathrm{PhICl}_{2}\right)^{8}$ or kinetic control $\left(\mathrm{RCO}_{3} \mathrm{H}\right) .{ }^{11}$ Coupling of the $\mathrm{S}=0$ vibrations could account for the presence of two $\mathrm{S}=\mathrm{O}$ bands in the ir spectrum of the symmetrical structure 4.
(11) W. O. Siegl and C. R. Johnson, J. Org. Chem., 35, 3657 (1970).
(12) Full details of the microwave study as well as novel features of deuterium incorporation in 2 and related compounds will be forthcoming.
(13) This is the first example of a nonplanar 1,3-dithietane derivative. Planar 1,3 -diethietanes have previously been described by Durig, ${ }^{1 d}$ Middleton, ${ }^{11}$ and Krebs. ${ }^{1 \mathrm{~h}}$ Thietane 1 -oxides are known from microwave ${ }^{14 \mathrm{a}}$ or x -ray diffraction ${ }^{i 4 b, c}$ studies to be "puckered" with dihedral angles of $32-35^{\circ}$ and with oxygen in the equatorial position.
(14) (a) J. W. Bevan, A. C. Legon, and D. J. Millen, J. Chem. Soc., Chem. Commun., 659 (1974); (b) G. L. Hardgrove, Jr., J. S. Bratholdt, and M. M. Lein, J. Org. Chem., 39, 246 (1974); (c) J. H. Barlow, C. R. Hall, D. R.

Russell, and D. J. H. Smith, J. Chem. Soc., Chem. Commun., 133 (1975).
(15) Similar observations have been made on the 1,3 -dithlane $1-0 x$ ide system: F. A. Carey, O. Hernandez, T. C. Taylor, Jr., and R. F. Bryan, Am. Chem. Soc., Div. Pet. Chem., Prepr., 19, 261 (1974).
(16) On the basis of electric moment measurements, it has been clalmed that 7 is nonplanar: C. Pigenet, G. Jeminet, and H. Lumbroso, C. R. Acad. Scl., Ser. C, 272, 2023 (1973).
(17) Mean values.
(18) The structural data for 7 may be compared to corresponding data for 2,2-dimethylthietane 1,1-dioxide: S-O 1.459 (4) and 1.452 (4) A, $\angle C S C$, $80.20^{\circ}, \angle O S O, 117.59^{\circ}$; M. L. Zlegler, J. Weiss, H. Schildknecht, N. Grund, and H.-E. Sasse, Justus Liebigs Ann. Chem., 1702 (1973).
(19) J. K. George and C. Trindle, Int. J. Sulfur Chem., 8, 83 (1973).
(20) National Sclence Foundation Undergraduate Research Partlcipant, 1975.

Eric Block, ${ }^{*}$ Eugene R. Corey, Robert E. Penn Terry L. Renken, Paul F. Sherwin ${ }^{20}$
Department of Chemistry, University of Missouri-St. Louis St. Louis, Missouri 63121
Received March 15, 1976

Thermolysis of Bicyclo[2.2.0]hex-2-ene

Sir:
The cyclodissociation of bicyclo[2.2.0] hex-2-ene ${ }^{1}$ (2ab, Figure 1) bridges two long studied series of similar reactions. Common to both is a problem still unresolved in any general way. How does molecular strain enhance reactivity when a "least-motion" mechanism is symmetry-forbidden?

Bicyclo[2.2.0]hexane (1b) employs its strain to select a symmetry-allowed but otherwise unanticipated (${ }_{\sigma} 2_{\mathrm{s}}+{ }_{\sigma} 2_{\mathrm{a}}$) path to hexa-1,5-diene. ${ }^{2}$ Dewar benzene (3 b), at least in part, crosses over to the benzene triplet surface. ${ }^{3}$ Bicyclo[4.2.0] oct-7-ene (4a) is believed to choose a sequence of two sym-metry-allowed steps-conrotatory ring opening to the cis-trans diene and then 1,5 -hydrogen shift-to provide the isomeric cis-cis diene. ${ }^{4.5}$ The more thoroughly investigated cyclodissociation of 1a to cyclopentadiene ${ }^{6}$ remains mechanistically the most obscure. ${ }^{7}$

Our approach, as elsewhere, ${ }^{2,8}$ has been to generate a complete list of mechanistic alternatives, both "plausible" and otherwise. Then, through experiment, as many as possible are rigorously excluded.

In this case, product analysis ($>97 \%$ cyclohexa-1,3-diene, uncontaminated by 'H NMR- or GC-detectable impurities) and homogeneous first-order kinetic data (Table I) ${ }^{9}$ rigorously

Figure 1. Hitherto available thermolysis ΔH^{\ddagger} and ΔS^{\ddagger} data.

Table I. Gas Phase (240-420 Torr) Kinetic Data

Temp, ${ }^{\circ} \mathrm{C}$	$10^{5} k^{a}$	R factor ${ }^{b}$
102.5	$.417 \pm 0.006$	0.011
110.9^{c}	1.06 ± 0.06	0.032
123.4	3.89 ± 0.18	0.019
137.4	20.5 ± 1.0	0.038
151.6^{c}	72.8 ± 2.5	0.018
$\Delta H^{\neq d}$	32.15 ± 0.09	
$\Delta S^{\neq d}$	2.4 ± 0.2	0.071
$E_{\mathrm{a}}{ }^{d}$	32.95 ± 0.09	
A^{d}	$(7.4 \pm 0.8) \times 10^{13}$	0.071

${ }^{a}$ Uncertainties are standard deviations. ${ }^{b}$ W. C. Hamilton, "Statistics in Physical Science", Ronald Press, New York, N.Y., 1964, p 157. ${ }^{\text {c }}$ Insensitive to a sixfold increase in surface area. ${ }^{d}$ Each set derives from concurrent nonlinear least-squares fitting of integrated GC area ratios obtained at all temperatures between 3 and 87% reaction.
excluded many $\mathrm{C}_{6} \mathrm{H}_{8}$ isomers as potential transient intermediates. Some are already known to provide other products (e.g., $\Delta^{1,4}$-bicyclo[2.2.0] hexene ${ }^{10}$) and/or to react too slowly at these temperatures (e.g., trans-hexa-1,3,5-triene, ${ }^{11}$ cyclohexa-1,4-diene, ${ }^{12}$ bicyclo[2.1.1]-13 or bicyclo[3.1.0] hex-2-enes, ${ }^{14}$ tricyclo[3.1.0.0 $\left.0^{2,6}\right]-{ }^{15}$ or anti-tricyclo[3.1.0.0 $0^{2,4}$]hexanes ${ }^{16}$). Still others (e.g., 2 -vinylbicyclo[1.1.0]butane, tricyclo [2.2.0.0 $0^{2.6}$] hexane) may reasonably be presumed to fall into one or another of these two categories. ${ }^{25}$ A particular effort was made to guarantee the absence $(<1 \%)$ of cis-hexa-1,3,5-triene, both in residual reactant and in initial product. Otherwise, the reported rate of its transformation to cyclo-hexa-1,3-diene $\left(10^{5} k=0.22,25.6 \text { at } 100^{\circ}, 150^{\circ}\right)^{17}$ would strongly have implicated mechanism 1 .

Next, cyclohexa-1,3-diene- d_{2}, obtained from the 5 -exo,6-exo- d_{2} substrate 5 , was oxidized to meso-dideuteriosuccinic acid of $>95 \%$ isotopic and diastereomeric purity. In this way, the absence of the $\left({ }_{\sigma} 2_{a}+{ }_{\sigma} 2_{s}\right)-\left({ }_{\pi} 2_{\mathrm{s}}+{ }_{\pi} 4_{\mathrm{s}}\right)$ variant of eq 1 is

confirmed. More generally excluded is any mechanism that might violate the stereochemical integrity of the two adjacent methylene groups. Among these, eq 2 is analogous to the (more difficult) transformation of bicyclo[2.1.0] pentane to cyclo-

pentene. ${ }^{18}$ Finally, the absence of $>1.3 \%$ of 6 or of $>0.2 \%$ of 7 in residual reactant requires that neither eq 3 nor 4 effectively compete with cyclodissociation. ${ }^{19}$

